

Securing your web stack
with Varnish

Kacper Wysocki

slides from by
Eduardo Scarpellini

hop to other slides,

 we will come back here

 soon enough

VFW / Sec Rules / SQLi

• Based on filtering of SQL queries.
– Insensitive;
– Encoding: ASCII, querystring;
– space (%20, +) or tabs (%09) as spaces;

• Ex.: prevention of “OR [0-9]=[0-9]” injection.

if (req.url ~ "(?i)(O|%4F|%6F)(R|%52|%72)(%20|%09|\+)+(%22|%27)?(%20|%09|\+)*\d+(%20|
%09|\+)*(%22|%27)?(%20|%09|\+)*(%3D|%3C|%3E)+(\%20|%09|\+)*(%22|%27)?(%20|%09|\+)*\d+")
{

error 403 “SQL­Injection";

}

VFW / Sec Rules / XSS

• Based on filtering of JavaScript functions and HTML “bad”-tags (script, img,
embed, object, applet, etc).
– Insensitive;

– Encoding: ASCII, querystring, UTF-8;

– JavaScript/browsers offers a lot of possibilities combining different sintaxes and
encodings – http://ha.ckers.org/xss.html;

• spaces, tabs and \n (CRLF) inside the tags – between chars;

– Muuuch more complex!

• Ex.: prevention of “<script>” tag injection:

if (req.url ~ "(?i)(<|(%|&#x)3C)?((%|&#x)(09|10|13|20))*(S|(%|&#x)[57]3)((%|&#x)(09|10|13|
20))*(C|(%|&#x)[46]3)((%|&#x)(09|10|13|20))*(R|(%|&#x)[57]2)((%|&#x)(09|10|13|20))*(I|(%|&#x)
[46]9)((%|&#x)(09|10|13|20))*(P|(%|&#x)[57]0)((%|&#x)(09|10|13|20))*(T|(%|&#x)[57]4)((%|&#x)
(09|10|13|20))*(%3A|(>|(%|&#x)3E))") {

error 403 ”Cross­site Scripting";

}

VFW / Tests / Scenarios

• OWASP Broken Web Applications used to construct 2
identical sets, each witch 20 vulnerable apps.
– WordPress, Gallery2, Joomla, AWStats, TikiWiki, etc.

• Scenario 1: Varnish configured without the sec-
filters.
– As seen on most ISP’s.

• Scenario 2: Varnish configured with sec-filters.

• OWASP Zed Attack Proxy used as a pentest tool in
both scenaries.

VFW / Tests / Numbers

• Scenario 1 (235 suspected vulnerabilities):
– XSS: 72 vulnerabilities;
– SQLi: 163 vulnerabilities;

• Scenario 2 (63 suspected vulnerabilities):
– XSS: 19 vulnerabilities;
– SQLi: 44 vulnerabilities;
– Decrease of 73%, approximately;
– Some types of attacks were completely neutralized by

security filters.

VFW / Results / Considerations

• Weaknesses:
– The approach (pattern-match) is susceptible to generating false

positives;
– High complexity of sec-filters for XSS (infinite possibilities of

encodings and syntaxes);
– Analysis of just 8Kb of HTTP POST (only for “application/x-www-

form-urlencoded”);

• Improvements:
– Standardization/normalization of request data before the

application of filters (simplification of XSS regexps);
– We really need an “official” way to inspect the POST data –

provided by Varnish.
• POST.vcl is quick’n’dirty hack around HTC_Read(), sp->htc->fd;

	Slide 1
	Slide 2
	Slide 3
	VFW / Sec Rules / SQLi
	VFW / Sec Rules / XSS
	VFW / Tests / Scenarios
	VFW / Tests / Numbers
	Slide 8
	VFW / Results / Considerations

